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Theory of the nematic-isotropic transition in a restricted geometry 
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01-224 Warsaw, Poland 

T. J. SLUCKINT 
Faculty of Mathematical Studies, University of Southampton, 

Southampton SO9 5NH, England 

(Received 25 September 1986: accepted 9 January 1987) 

We discuss, using a Landaude  Gennes formalism, the nematic-isotropic 
transition temperature for a system placed between two parallel plates, subject to 
identical homeotropic or homogeneous boundary conditions at each plate. The 
temperature at the phase transition may increase or decrease as the inverse sample 
thickness, D -I, increases, depending on the nature of the boundary conditions. In 
all cases the transition terminates a t  a critical point for sufficiently large D-', 
beyond which the nematic and isotropic phases are n o  longer distinct. The phase 
transition temperature is well described by a liquid crystal analogy of the Kelvin 
equation which can be generalized to give an exact Clausius-Clapeyron relation. 
Under many circumstances the system behaves from a thermodynamic point of 
view as though it were in a bulk ordering field. The finite geometry restricts the 
growth of nematic or isotropic wetting films. We discuss the disjoining pressure 
experiment of Horn, Israelachvili and Perez [ 151. Finally we place our work in the 
context of recent progress in the statistical mechanics of surfaces and systems in 
restricted geometries. 

1. Introduction 
The singularities in thermodynamic quantities which are associated with phase 

transitions in physical and chemical systems only occur in the so-called rhermodynumic 
limit, that is, in the limit of infinitely large systems. If system size is restricted in any 
way, either as a result of the presence of surfaces, or because the system only has finite 
extent in one or more directions, these singularities are profoundly affected. Their 
position in the phase diagram may change, new singularities may occur, and the 
singularities themselves may cease to be. Particular cases of such systems are semi- 
infinite systems, with one wall, and systems which are infinite in two dimensions but 
of finite extent in a third; these systems have two walls. Such systems are sufficiently 
infinite that thermodynamic singularities do occur and sufficiently finite that qualita- 
tively new phenomena also occur. 

We have ourselves recently made a theoretical study of nematic liquid crystals in 
a semi-infinite system [ I ,  21, and in this paper we extend our study to deal with the 
two-wall problem. In the liquid crystal context the pioneer of such investigations was 
Sheng [3]. He studied a semi-infinite sample of nematic liquid crystal in contact with a 
wall which exerts an ordering potential on the nematic. Under some circumstances a 

t Temporary address until September 1988: Institut Laue-Langevin, 156X, 38042 Grenoble 
Cedex, France. 
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282 A. Poniewierski and T. J. Sluckin 

separate first-order phase transition occurs at the wall, at a temperature slightly above 
the bulk nematic-isotropic phase transition TN, , and at which orientational ordering 
occurs close to the wall. In fact, as observed by ourselves [1,2] and others [4] this 
so-called boundary layer phase transition is none other than the prewetting transition, 
a rather general phenomenon occurring when two critical phases are influenced by a 
third non-critical phase [5]. Sheng also studied a finite size nematic sample between two 
parallel ordering walls. The phase transition between the disordered isotropic phase and 
the ordered nematic phase is shifted slightly to higher temperatures. The coexistence 
curve has its own critical point for some critical value of the thickness. In addition, 
features of the semi-infinite system phase diagram are preserved. The boundary layer 
phase transition can occur, although it is rather insensitive to sample thickness D. 

There has also been recent experimental work. Kuzma and Labes [6] studied the 
thermodynamics of a liquid crystal in a cylindrical pore and found that the transition 
temperature dropped slightly as the pore size was reduced. Yokoyama et al. [7] used 
the birefringence method to study thin nematic films bounded by solid substrates, and 
their results are consistent to some extent with Sheng’s picture. They observed a shift 
in the transition temperature and there is evidence that the transition becomes 
continuous at a critical point when the nematic film is still as thick as a few thousand 
Angstroms. However, in contradiction with Sheng’s study the transition temperature 
shifted either upward or downward, depending both on the type of nematic and on 
the type of substrate. 

In this paper we study the consequences of the LandauAe Gennes theory of the 
nematic confined between two walls. We extend somewhat the model of Sheng in 
order to discuss disordering as well as ordering walls. In the Landau form the theory 
is in fact applicable to any first-order phase transition in a restricted geometry, in 
particular magnetic systems and the liquid-gas transition. Such problems have been 
studied for many years and there has recently been a resurgence of interest associated 
with the progress made in understanding wetting and spreading phenomena. Kelvin, 
in the last century, used a thermodynamic argument to derive the shift in the saturated 
vapour pressure of a vapour in a pore [8]. We shall make the analogous thermodynamic 
argument, but also be interested in the limits to such arguments. More recently 
Nakanishi and Fisher [9] were interested in the effect of plate geometry on the 
liquid-vapour critical point. Their arguments demonstrate that a critical point is 
expected for a sufficiently thin sample for a system undergoing a first-order phase 
transition. Lipowsky and Gompper [lo] and Sornette [ I  11 have looked a t  a Landau 
model between purely disordering plates, and have in particular concentrated on the 
asymptotic regime of large sample thicknesses. In our work we present calculations 
over the whole range of D, and for the more generic case of walls which have both 
ordering and disordering terms. We also discuss the asymptotic regime, which is 
extremely useful in checking approximate formulae for critical parameters. In addition 
a number of authors have recently studied the phenomenon of capillary condensation 
[12], which is essentially the same phenomenon as that which we discuss. 

A related phenomenon which can be examined theoretically using the Landau4e 
Gennes formalism is that of the so-called structural force between two solid walls, the 
region between which is filled with fluid. This force, sometimes also known as the dis- 
joining force or pressure, exists because each wall independently affects the fluid struc- 
ture close to it; the presence of the other wall changes this effect slightly, and hence 
changing the separation affects the free energy. Interest in this phenomenon goes back 
many years [13]. More recently, Perez et al. [I41 have made a thermodynamical study 
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The N-I transition in a restricted geometry 283 

of a liquid crystal system placed between two walls, emphasizing the structural force, 
and Horn et al. [I51 have carried out an experimental study of such a system. 

The paper is arranged as follows. In $2 we set the scene by deriving various 
thermodynamic relations which are useful in the development of the theory. In $3 we 
describe the model. In $4 we explain in principle how the model is solved, and describe 
how some crucial quantities which crop up in the solution of the model are related 
to the thermodynamics. In $5, which is of more theoretical interest, we examine 
asymptotic properties of the model in the large slab thickness limit. In $6 we give the 
results of the calculation of the nematic-isotropic phase diagram as a function of 
temperature and slab thickness. We also compare the predictions of the theory for the 
critical parameters with a simpler heuristic theory, and thus relate this finite size 
transition to the nematic-isotropic transition in an ordering field. We also make some 
comments about the relation of the theory to experimental work. In $7 we concentrate 
on the predictions of the theory for the structural forces between the two walls. Finally 
in $8 we make some concluding remarks. Although the model is very simple, the 
calculations are rather long-winded and most of the technical detail of the calculations 
has been relegated to the two Appendices. 

2. Thermodynamics 
In this section we discuss various elementary thermodynamical considerations 

which it will be useful to bear in mind during our discussions of the microscopic 
model studied in subsequent sections. Although in principle the microscopic model 
can allow for the presence of a finite magnetic field which has an ordering effect 
on a nematogen, we shall confine our discussion in this section to the zero magnetic 
field case. 

We first discuss the shift in transition temperature in a system of thickness D. The 
grand thermodynamic potential R is a suitable free energy for this system (the 
chemical potential p is supposed fixed). Per unit area, in the simplest approximation, 
this is given by 

R 
A 
- -  - - p D  + 27, 

where y is the surface free energy, p is the bulk pressure and A is the area. We denote 
the surface free energies of the nematic and isotropic phases by y N ,  y I ,  respectively, 
and the Young-Laplace surface tension formula yields 

Y I  = Y N  + 7 N I C o s 8 ,  (2)  

where 8 is the contact angle at a nematic-isotropic-wall line of contact, and y N I  is the 
surface tension at the nematic-isotropic interface. We denote the pressures in the 
isotropic and nematic phases at temperature T by p ,  ( T )  and p N  ( T ) ,  respectively. The 
bulk coexistence temperature TNI is defined by 

pi(TN0 = pN(TNi). ( 3 )  

In the finite thickness sample the phase transition occurs at TNI(D) = 
TNi + ATNI(D). At this temperature ON = R,,  or 

(4) 
2 Y N  2Yl 

-PN(TN~(D)) + 7 = -pi(TNi(D)) + z. 
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The shift is small, so 

aPN PN(TN~(D)) = PN(TNI) + (TNi)ATNi(Dh 

= P N ( T N I )  + &(TNi)ATNi(Dh ( 5 )  

where SN is the entropy per unit volume of the nematic phase at  TNI, and a similar 
equation obtains for p I .  Substituting equation ( 5 )  into equation (4), we obtain 

or 

where 

is the latent heat per unit volume at the bulk nematic-isotropic transition. Variations 
of this equation date back to Kelvin [8] and we call this the Kelvin approximation [ 161. 
A trivial consequence of equation (7), using equation (2), is that 

= TNI(sI - sN) 

and thus if cos 0 > 0 then T N I  is increased, whereas if cos 6 < 0 then TNI  is decreased, 
as might be expected intuitively. 

However, the formulae (7) and (8) are only approximate. They ignore the interaction 
between the walls. Equation ( I )  must be supplemented in order to take this into 
account. We then obtain 

(9) 

where all wall interaction effects are taken account of by the interaction potential 
E( D), which must be calculated microscopically. However, 

sz 
- = - p D  + 2~ + E(D), 
A 

defines the disjoining pressure or disjoining force [ 131, nD. The quantity nD is the force 
required, per unit area, to keep two walls a distance D away from each other when 
the whole system is immersed in an infinite bath of the same fluid as is between the 
walls. The infinite bath provides the pressure p ,  but the extra pressure nD must be 
supplied mechanically. 

The thermodynamical potential appropriate at constant disjoining pressure is 'P, 
whcre 

= 27(D). 

This obeys the equation 
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The N-I transition in a restricted geometry 285 

Then I(D) is the surface tension per wall on the two-wall system, and in some sense 
is the finite D analogue of y .  

A more exact analogue of equation (7) can now be calculated. This equation will 
be the Clausius-Clapeyron equation for the nematic-isotropic coexistence curve with 
changing D .  If TNI(D) and TNI + d T N I ( D  + dD) are neighbouring points on the 
coexistence curve, we have, following the usual Clausius-Clapeyron-type arguments, 

I aAn 1 dAR 
A dD A dT 

dD + - - dTN1 = 0. -- 

Following the argument of equations (6) and (7), 

(15) 

where L ( D )  is the latent heat per unit volume in the finite system. Also from equation 
( I  I ) ,  and using equation ( 1  3), 

QD) 
- D -  

1 dAR -- - 
A dT TNI (0 ’ 

Combining the results in equations (14)+16) we obtain 

as the equation of the coexistence curve. This is the natural generalization of the 
Kelvin equation (7) but is now in its exact differential form. We make use of this 
equation to calculate coexistence curves in our model calculations. Taking the limit 
D = cn, j j  = y ,  = L reproduces equation (7). The formula applies so long as a true 
phase transition does occur. 

Finally, in this section, we discuss the phenomenon of capillary condensation. I f  
there were merely one wall, the potential at the wall might favour either phase. When 
the contact angle 8 = 0 the nematic phase is favoured, when H = 7c the isotropic 
phase is favoured, and intermediate values of H apply to intermediate situations. As 
has been much discussed recently [4], 0 = 0 and 0 = 7c are special situations in that 
complete wetting occurs. We discuss, for definiteness, the 8 = 0 case. The nematic 
phase is then so favoured that as the thermodynamic conditions for nematic-isotropic 
coexistence are approached a layer of nematic phase forms at the wall, and the 
thickness of this layer diverges as the bulk phase transition is approached. How does 
this phenomenon generalize to the two-wall situation, where the surface layer is 
precluded from divergence by the finite thickness of the sample? 

The answer to this question depends on the thickness of the sample. Recall, from 
equation (8), that the phase transition occurs at a higher temperature than in the 
bulk. The shift in phase transition temperature is TNI - D I .  Now, for short- 
ranged surface forces, the thickness of the nematic layer at the wall is given by [5] 
H - In I T,, 1. For a sufficiently thick sample, Twill be small, D & H ,  and the phase 
transition will occur hefore the nematic layer has had a chance to grow thick. Indeed, 
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286 A. Poniewierski and T. J. Sluckin 

at each wall the maximum thickness of the nematic layer, before the bulk transition 
takes place, will be H - In D. This is the phenomenon of capillary condensation. On 
the other hand for a thin sample, the Kelvin equation (8) suggests a phase transition 
at a temperature at which the nematic layer thickness at  the walls is already larger 
than the sample thickness. Then we expect no sharp transition. Somewhere in between 
there will be a critical point. We expect our model calculations to conform to these 
general observations, and we shall be interested in features of the transition under 
these circumstances. 

3. Model 
We consider a nematic sample between two parallel walls placed at z = 0 and 

z = D respectively, and unbounded in the xy plane. The nematic is assumed to be 
subject to homeotropic boundary conditions (i.e. with its director perpendicular to the 
walls), although our results may be partly applicable to the case when the nematic is 
subject to identical homogeneous boundary conditions at each wall (i.e. each plane 
has an identical easy axis in the xy plane), in which case the system is dominated by 
the behaviour of the order parameter along this direction. This restriction enables us 
to assume that the nematic director is uniform throughout the sample. We also ignore 
nematic density variations in the sample. Thus the only variable depending on z is the 
nematic order parameter Q(z)  = Qzz(z).  Following Sheng [3] we take the free energy 
density in the Landau-de Gennes form 

where A = A’(T - T*), B and C are temperature-independent parameters, x., > 0 
is the anisotropic part of the magnetic susceptibility, and His  a uniform magnetic field 
along the z axis. It is convenient to deal in dimensionless quantities, and in order to 
do this we introduce a dimensionless order parameter q = (C/B)Q,  and divide 9 by 
B4/C’, to obtain [I71 

F(q)  = (9 - 9 0 ) / ( B 4 / C 3 )  = ttq’ - i q ’  + &q4 - hq, (19) 

where F, t = AC/B2 and h = $ x d H 2 C 2 / B 3  > 0 are the dimensionless free energy 
density, temperature and ordering field respectively. The bulk phase diagram resulting 
from this free energy has been much studied [ 17,181; however it is useful to recapitulate 
its basic features. 

At temperatures f > f, = :8 there is just one phase. At temperatures lower than 
this there are two phases: a low field paranematic phase (at zero field this becomes the 
isotropic phase) and a high field nematic phase. The coexistence line terminates at a 
critical point at t , ,  h, = &, q, = a. It is linear in the ( t , h )  plane: 

h - h, = ( t  - f,)/6, 
and 

Thus at  zero magnetic field we have the usual isotropic-nematic transition at 
tNI = >Ii,  qp = 0, qN = $. Below t N ,  only the nematic phase exists. 
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The N-I transition in a restricted geometry 287 

The total dimensionless free energy functional per unit area has the form 

where t = (LC/B)”’ is the nematic correlation length, and the second integral gives 
the surface contribution to the free energy. We assume, as in our previous work [ I ,  21, 
the surface potential due to the walls is a contact potential, of zero range, and that 
it consists of two terms 

The first term is responsible for surface-induced order (h,  > 0), and the second term 
for surface-induced disorder ( g  > 0). From a microscopic point of view, the second 
term is a result of the fact that molecules close to an interface have fewer nearest 
neighbours than in the bulk. Sheng [l] considered only the first term, although other 
workers have studied surface-induced disorder [lo, 11,191. To understand the full 
range of possible behaviours it is necessary to consider both terms. The equilibrium 
profile q(z)  results from the minimization of $ ( q ( z ) } .  This yields the Euler-Lagrange 
equation 

together with boundary conditions 

Although this model is very simple, it contains an extremely rich set of behaviours, 
and the procedure required to solve the model is rather detailed. We discuss the 
method of solution and the results in the following sections. 

4. Solution of model: general considerations 
In this section we give a general outline of the procedure required to solve the 

model introduced in the last section, and make contact between properties of the 
model and the thermodynamics discussed in 92. 

We start with the basic equations of the model, equations (25 )  and (26) .  A crucial 
physical point to note is that the system is symmetric about z = D / 2 ,  from which it  
follows that ( d q / d ~ ) , , ~  = 0. Thus integration of equation (25) yields 

where q,,, = q(z = D / 2 )  is the order parameter at the middle of the sample. The 
quantities q,,, and F(q,,,) have considerable importance in the theory. 
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Equations (27) and (23) can be combined to yield an explicit expression for the free 
energy per unit area 

where 

0 = k 2  J,: J [ F ( ~ )  - ~(qrn)ldq + c(qn); (29) 

here the signs +, - correspond, respectively, to a profile increasing or decreasing at 
z = 0, and and )I,,,, which 
should be minimized with respect to these variables. The minimization with respect 
to q,  gives 

= q(z = 0). Now we can treat q5 as a function of 

* 2J[F(qn) - F(qrn)I = V,’(qn), (30) 

which is consistent with the result we would obtain by combining equations (27) and 
(26). The minimization with respect to g,  leads to a relation between qo,  I],,,, and D, 
namely 

I f  D -, cc then q,,, tends to the bulk order parameter of the infinite system qb and we 
recover the semi-infinite sample problem with o being the wall-nematic or wall- 
paranematic surface tension. For finite D,  on the other hand, the parameters and 
q,,, are coupled and we have to solve equations (30) and (3 1 )  to find them as a function 
of D, t and h. 

From a physical point of view D is the independent variable, and we wish to solve 
for qa(D) and q,(D). However, in the context of equations (30) and (31) it is clear that 
if )I,, and q ,  are chosen as the independent variables then equation (31) provides an 
explicit expression for D(q0, q,) .  The quantities q o  and q,,, are connected by equation 
(30), which can be recast as 

Frn(q0) = F(qm) = F(qo) - i [ K T ( ~ o ) I 2 .  (32) 

In this equation i t  is clear that if q,,, is treated as the independent variable, qo is an 
ambiguous function of q,,,. On the other hand if is regarded as the independent 
variable, then F,,(qo) = F(qm)  is well defined. The solution of this equation for q , ( q O )  
is not in fact unique; indeed there may be up to four solutions. The physical solution, 
however, must obey two further conditions, and this does impose uniqueness. We are 
thus able to establish a functional relationship D(q0). The conditions are 

(33) (qm - qn)K’(qn) 2 0, 

and 

F(q)  - Q q m )  > 0 for min(qo, qm) < v < max(q,, qm). (34) 

Equation (33) follows directly from equations (26); ( q ,  - qo) has the same sign as 
(dq/dz),- , ,  and hence the same sign as V,’(qo). Equation (34) is merely the condition 
that equation (27) is satisfied for all physical q,  i.e. all those q lying between q o  and 
Vn,. 
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The N-I transition in u restricted geometry 289 

Having shown that qm is a single-valued function of qo, we proceed in the following 
way. 

( i )  We determine the physical regions of qo, using the inequality 

F, = F(q0) - $ [ L ( ’ ( V ] , ) ] ~  > min F(q). (35) 

N o  solutions for q ,  exist if equation (30) is not satisfied. 

(ii) We calculate 

D(vo) = D(qn, v ~ ( v o ) )  (36) 

using equation (31). 

(iii) We seek solutions to the equation 

D = m a ) .  (37) 

(iv) We isolate the stable solutions of equation (37). The stability conditions are 
most conveniently written as 

 lo)/ K’(qn) < 0, (38) 

D’(%)/~;(vo) < 0. (39) 

We postpone the derivation of these inequalities to Appendix I .  

(v) Finally we find the equilibrium values of qo and q,,,, corresponding to the 
absolute minimum of b(qo, q,,,). 

4.1. Thermodynamic properties of the model 
At this stage it will be useful, even before we solve the model by carrying out the 

set of procedures just outlined, to make contact between the quantities occurring in 
the model and the general thermodynamic considerations described in $2. 

The relevant normalized surface free energy in our model system can be rewritten 
from equation (28) as 

b = 2a + ( D / t ) F ( q b )  + ( D / < ) ( F ( q m )  - F(qb)). (40) 

We can compare this to the thermodynamic expression for the grand thermodynamic 
potential, Q, obtained by combining equations (9) and (1 1) to give 

Q = 27 - Dp - DnD. (41) 

We identify F(qb) with - p ,  the free energy per unit area of a system of thickness 
D immersed in the bulk system. The disjoining pressure nD can now be identified with 
- (F(q,,,) - F(qb)), and the surface free energy c can be identified with the thermo- 
dynamic quantity 7.  We also note that nD is the force per unit area required to hold 
the plates at a distance D apart. The work required to expand the system from a 
thickness D to a thickness D + dD is 

dW = nDdD 

= - (g)p dD. 
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Mechanical stability demands that [ 151 

or equivalently 
n,(dD + dD)  < n,(D),  

dnD - <: 0. 
dD 

(43) 

(44) 

This is a condition on the physical accessibility of the system of thickness D,  which is 
produced by supplying physically the force n,. At a given nD the system will slip 
through a region where (dn,/dD) < 0. 

5. Asymptotic behaviour 
In this section, before investigating in detail the function D(qo) ,  we find it useful 

to extract as much information as possible about the large D behaviour of the finite 
thickness system by carrying out an analysis of its asymptotic behaviour in this 
regime. We shall first discuss the behaviour, at fixed t, of the quantities qm(D)  and 
qo(D) .  This analysis gives some further insight into the Kelvin equation for the 
temperature shift of the phase transition, discussed in $2. We then discuss some 
aspects of the ordering phase transition at finite D .  

At large D we may suppose that q,,, is close to qh = q m ( D  = co), and that qo is also 
only slightly perturbed. D,  and qm are related through equation (31). The principal 
contribution to this integral comes in the region of q close to qm.  In this regime F(q)  
can be expanded in the following way. 

Substituting equation (45) into equation (3 I )  yields the asymptotic expression 

For h = O and t = f N I ,  qb = O or qb = qN = 6 ,  and [$F"(qb)]li2 = &. We may show 
in a straightforward way, using equations (29) and (32), that qo(D) and a ( D )  also differ 
from their values at D = 00 by terms which are exponentially small as a function of D .  

The thermodynamic argument of 52 derives the Kelvin equation (7) for the shift 
in the transition temperature by balancing bulk and surface free energy terms. In the 
context of the present model this can be derived from the free energy expression of 
equation (40), 

4 = 2a(D = 00) D/<F(qb)  4- 2[O(D) - g(w)] D / { [ F ( v m )  - F(qb)]. (47) 
The asymptotic behaviour of AfNl as a function of D results from the first two terms 
in this expression; the last two terms are exponentially small and can be neglected. 
Thus in the asymptotic regime the normalized shift in the phase transition temperature 
AtNP is given by 

A f N P  = 2fNI"aP(OO) - ~ N ( ~ ) 1 ~ / D ~ ,  (48) 

where a,, , aN are the paranematic-wall and nematic-wall surface free energies respect- 
ively, I = t N p ( s p  - s N )  is the (normalized) latent heat at  the phase transition, and 

aF s =  - -  
at (49)  
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The N-I transition in a restricted geometry 29 I 

is the bulk entropy density, with the subscripts p and N applying to the paranematic 
and nematic phases respectively. Expression (48) is expected to be exact in the limit 
D + a, but, as we shall see, this approximation can also be rather good for quite 
small D so long as the wall potential is not too strong. These observations have been 
made before in discussing phase transitions in finite systems [ 10, 1 I]; Evans et al. [ 121 
drew attention to their connection with the thermodynamic results. 

We have already emphasised in 92 the dependence of tNp on the nematic-wall 
contact angle 0, and the particular significance of the cases 8 = 0 and 8 = n when 
complete wetting by the nematic and paranematic phases occurs, respectively. We 
recall that in the one-wall case for 0 = 0 there can, under some circumstances, be a 
boundary layer transition at which qo (but not g b )  jumps. For finite D this transition 
persists, although now the large jump in qo is accompanied by an exponentially small 
jump in g,,, with a functional form given by equation (46). Sheng [3]  found that this 
line of boundary layer transitions is parallel to the D axis, essentially because of the 
exponentially small corrections to qo and q,,, z q b .  For smaller D the boundary layer 
transition temperature would no longer be independent of D, but apparently the 
transition disappears at rather large thicknesses ( D / c  z 100) where the asymptotic 
relations still hold. 

For paranematic wetting (8 = n) the situation is analogous, although A t N p  < 0. 
However, in the case of zero bulk magnetic field (h = 0) the conditions for complete 
wetting by the isotropic phase are rather restrictive; in particular h,  = 0. The nature 
of the wetting phase diagram now prohibits a boundary layer transition [I]. 

The distinguishing feature of complete wetting in the semi-infinite system is that 
the surface structure shows no discontinuity at the phase transition. In particular, in 
the context of the present model, even though g, jumps discontinuously at the phase 
transition, go only undergoes a continuous transition at  t N , .  This is no longer the case 
for a sample of finite thickness. A question of some theoretical interest is the functional 
form and magnitude of the jump Ago(D) at the transition temperature tNp(D). To 
investigate this we first note that 

where S b ( q b )  is the bulk entropy density, g,, corresponds to either the nematic or 

isotropic phases, and so = - - . Terms exponentially small in D have been 

neglected; they are small compared to A t N p  - D - ' .  We now combine equation (50) 
and (51) with the relation ( 3 2 )  to obtain 

F m ( d 9  "I )  - F r n ( V n 9  ~ N I )  = [($ - s t )  -t (SN - SI)]A~NP, 

- D I, ( 5 2 )  
where 

9; = VO(GP(D)). 

In general we expect g l  z go z qa(D = a); then from equation (32) 
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292 A. Poniewierski and T. J.  Sluckin 

where Avo = qO+ - q0 and hence combining equations (52) and (53) 

Avo - D-I.  (54) 

This behaviour applies if the nematic phase wets the wall. However, if the isotropic 
phase wets the wall this reasoning does not apply. Now qo(D = 00) = 0, and as we 
have observed previously this only obtains when 

V , ( V o )  = tsd.  ( 5 5 )  

We must still have qt = 0, although q; # 0. In this case, using equation (32), 

Now qo = 0 is itself a local solution of the bulk statistical mechanics, so dF/aq, = 0,  
and hence by combining equations (55) and (56), we have dF,,/aq0 = 0. Thus in this case 

and combining equations (52) and (57) yields the asymptotic behaviour 

Finally in this section we discuss the behaviour of the average order parameter 

close to the paranematic-nematic phase transition. This quantity is experimentally 
accessible in, for example, a birefringence experiment. Whereas in the bulk system qb 
jumps from zero to q, at I,, (for h = 0), in general in the finite D case i j  shows some 
pretransitional behaviour, and is non-zero (although relatively small) even above t N , .  
The only exception to this is the case when the surface field h ,  is identically zero; as 
we have discussed, then and only then )lo = q, = i j  = 0 everywhere above f,,,,. We 
shall, for definiteness, study the behaviour of jj(fAP(D)), the value of the average order 
parameter in the paranematic (‘isotropic’) phase just above the phase transition. We 
must deal with the two cases, complete wetting by the nematic phase, and partial 
wetting, separately. In both cases, however, because the corrections to q,, and q, are 
exponentially small, the leading behaviour for large D is given by 

where 

is the adsorption on a single wall in the semi-infinite system. 
As discussed in 42, for complete wetting, 

Ut)  - In(f - f,,), 
from which r(r; , (D))  - InAt,, - InD, and hence 

ij(tLP(D)) - In DID. 
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The N-I transition in a restricted geometry 293 

On the other hand for partial wetting I- remains finite at t N , ,  and is an analytic 
function o f t  in this region. Thus 

(63) 

and substituting from equation (63) into equation (60) we obtain 

There are analogous effects below the phase transition; the relevant quantity to study 
is i j(1iP(D)) - v ] N ( f N , ) .  However these effects are much more difficult to measure. 

6. The nematic-paranematic phase diagram 
We first present the method for the calculation of the nematic-paranematic phase 

diagram, for h = 0, and the results of the calculations. The calculations themselves 
are by no means trivial, and we postpone a more complete description to Appendix 
2 ,  in which we also give some general arguments about the shape of ~ ( z )  under various 
circumstances. 

In general, the strategy used to determine the phase diagram is to plot D(qo)  for 
a given temperature t .  This graph, in general, has a number of branches, one of which 
is the thermodynamic branch. At the phase boundary the free energy corresponding 
to two different branches is the same. The phase boundary at D = 00 is known. For 
very small D-' the phase boundary can be plotted using the Kelvin equation (48). For 
higher D - ' ,  the Clausius-Clapeyron relation (17) must be used. In the context of the 
present model this equation becomes 

(65) 
- rg), - AFm - 25Aa 

DAS D ~ A S '  

where 

and s(2) is the local entropy density. Using D - '  as the independent variable we 
obtain 

dD- '  

The average entropy S can be expressed in terms of qo, y~, and D as 

In principle the relation (67) is exact. In practice this relation is used to provide a guess 
for t N P ( D ) ,  and knowledge of the functions D(qo)  and &D, qo)  is then used to improve 
this guess. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



294 A. Poniewierski and T. J. Sluckin 

0.05 1 
'NP 

0.00' 4 
0.1 0.2 

Figure 1 .  Phase boundaries in the (D-', I )  plane. (a) h,  = 0.02, g = 0; (b)  hl = 0.01, g = 0; 
(c) h, = 0.01, g = 0.15; ( d )  h ,  = 0.02, g = 0.4. 

We show in figure 1 the phase diagram in (t, D-') space for a number of different 
values of h,  and g. Certain generic features of the phase diagram (the shift in 
coexistence curve and the existence of a critical point) are universal. Only when the 
wall is completely disordering (h, = 0), do we not find the existence of a critical point. 
Depending on the value of the contact angle cos 8, the phase transition temperature 
f N p ( D )  increases or decreases as a function of D-' . The other dramatic feature which 
accompanies the shift in f N ,  is a change in the behaviour of the mean order parameter 
i j(t). We show in figure 2 schematic representations of the behaviour of i j(t) as D- I is 
increased, for a number of different cases. In figure 2(a)  we show the behaviour of 
ij(T) for different D for strongly ordering walls. Roughly speaking this corresponds 
to the phase diagram of figure 1 (a) or (b). In figure 2(b)  we show the behaviour of 
i j (  T )  for weakly ordering walls, for which cos 8 < 0. This corresponds to the phase 
diagram 1 (c) or (d). In figure 2 (c) we show ij(T) for disordering walls. In the first two 
cases there is a small amount of ordering above t , ,  . In the last case there is no critical 
point. 

In figure 1 the dependence tNI(D) is described by the Kelvin approximation 
AtNl - D - '  in the asymptotic regime D-' -, 0. For small values of h,  and g this 
approximation is good in practice up to the critical point. We find that the Kelvin 
equation can only be satisfied for smaller separations if partial wetting conditions 
obtain. Figure 1 (a) with h ,  = 0.02, g = 0 appears to give linear D-' dependence for 
t N l .  However, its slope for larger D-'  differs from that predicted by the Kelvin 
equation. This phenomenon is connected to the boundary phase transition, which 
occurs (g = 0) for 0.014 < h,  < 0.024. For smaller values of D the modified transition 
temperature is sufficiently high that it pre-empts the boundary phase transition. The 
behaviour of tNI(D) is still governed by the asymptotic rule, but now the appropriate 
surface free energy to take is the metastable low qo value, rather than the stable high 
qo value. The low qo value is stabilized by the increase in t N I .  It corresponds to a higher 
value of a, than the stable value (which is just oN + oN1), or equivalently, a value of 
cos 0 > 1. Thus in figure 1 (a) we have the apparently anomalous example of a surface 
phenomenon governed by a value of cos 8 = (a, - oN)/aNI > 1. 

At  this point we remark on the strong analogy between the nematic phase diagram 
in a bulk system in a bulk magnetic field h, and the nematic phase diagram in a 
confined system as a function of the inverse wall spacing D-' . This analogy was 
noticed by Sheng [3], and is implicit in the use of the term paranematic for the less 
ordered phase in both cases. However, unrealistically large bulk magnetic fields are 
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a 

'NI t 

'N1 t 

C 

t 'NI 

d 

295 

t tNI  

Figure 2. Schematic plots of the mean order parameter tj against temperature 1. (a )  cos 0 > 0; 
(h) cos 0 < 0; ( c )  g = 0; purely disordering boundary. Curves I (-), 2 (--), 3 (- . -. ) 
and 4 (-----) are in order of decreasing thickness. Curve 1 is D = m. (d) includes the 
boundary transition. 
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296 A. Poniewierski and T. J. Sluckin 

required to observe the bulk nematic-paranematic critical point. We therefore pose 
the question: is the analogy between these two phenomena more than just a formal 
analogy. so that by observing the finite geometry phenomena we may think of 
ourselves as observing the bulk nematic-paranematic phase diagram in another guise? 
We examine this question further in the next subsection. 

6.1 .  The critical point 
We make the simplest approximation, which is to suppress spatial variations of the 

order parameter, and suppose that surface fields can be averaged over the bulk. The 
liquid crystal is now treated as if i t  were in an effective external uniform ordering field 

helT(4) = 2v,(ij)/(D/S)7 (69)  
where i j  is a (suitably defined) average order parameter, and the free energy density 
is now given by equation (19)  

Qjj) = ” - 2  - L-3  + 
4 1 4 1  P a 4  + Mijh 

= i(t + ?g</D)ij’ - S i j ’  + p6ij4 - 2h , ( t /D) i j .  ( 70 )  

The net cffect is not only to introduce an effective ordering field but also to shift the 
temperature scale downwards. The reduced number of surface nearest neighbours 
means that the temperature required for the onset of nematic behaviour is lowered. 

The critical parameters can now be found by comparing the parameters in the free 
energy of equation (70) to those in equation (19).  We obtain for the critical thickness, 

2h,(S/Dcr) = hc, (71)  

DCIl5 = 2h,/h,;  (72)  

and hence 

for the critical temperature 

t c ,  + $gS/Dcr = t c ,  

whence, combining equations (72)  and (73) we obtain 
(73)  

t c r  = t c  - $g(hc/h,)* (74)  
In  figures 3 , 4  and 5 we compare the predictions of equation (72)  and (74) with those 
of the full non-uniform theory. In figure 3 a plot of D,, against h, is shown for a 
number of different values of g / h l .  The predictions of equation (72)  are remarkably 
well satisfied, especially for low h, . Discrepancies occur for higher h, , in particular for 
large values o f g l h , .  Equation (74)  predicts that t,, = t , , (g /h , ) ,  and for h, 5 0.02 this 
is very well satisfied. Equation (74)  also predicts that if h, = 0, t,, -+ - co, or 
equivalently that no critical point exists, and this also is consistent with the predictions 
of the full theory. On the other hand if g = 0, equation (74) predicts that t,, should 
be independent of h, . In figure 4 we compare this approximation to the full theory. 
For low h, this is well-satisfied, although we find numerically a slight decrease in t,, . 
Above h, - 0.02 there is a more marked decrease in t , , ,  which then stabilizes at a 
lower value of t,, around h, - 0.03 [20].  In figure 5 we check the prediction of 
equation (72) for the functional dependence of Dcr on h, , for the case g = 0. Once 
again we notice that the prediction is well satisfied for h, 5 0.02, but there are 
significant deviations for higher h, . 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



The N-I transition in a restricted geometry 297 

Figure 3. Comparison of the predictions for D,, as a function of h,  using the full non-uniform 
theory and a simple averaged field approximation. Line (a) corresponds to g = 0; line (c), 
g/hl = 5 ;  line (d), g / h ,  = 10; line (e), g / h ,  = 30. Line (b) is the prediction of the 
averaged field approximation. 

0.02 
0.03 t +cr 

0.01 + 
0- 

0.02 0.04 0.06 0.08 0.10 

hl 

Figure 4. Prediction for I,, as a function of h,  for g = 0. The dotted line t = t ,  is the average 
field prediction. 

Figure 5 .  

0. I 
hl  

Prediction for D,, as a function of h,  for g = 0 in the large h, regime. 

We now make some brief comments on these results. The simple theory approxi- 
mates the full theory well, from the point of view of predicting the critical parameters, 
for h,  < 0.02. By comparison we remark that complete wetting by the nematic phase 
occurs at h, = 0.014, and the last vestige of non-wetting behaviour, the surface critical 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



298 A. Poniewierski and T. J. Sluckin 

point, occurs at h, = 0.024. It seems likely, therefore, that the approximate theory 
loses its validity at the onset of complete wetting. Why this should be is not clear. We 
speculate that this might be because the finite thickness system has two nematic- 
isotropic interfaces which in some sense screen the effect of the surface field from the 
centre of the sample, thus lowering the critical temperature. We observe that at very high 
fields the critical temperature seems to stabilize, but at a lower temperature from that 
predicted by the simple theory. We do not understand this phenomenon, although it 
seems likely that there is a simple qualitative explanation. This is, however, precisely 
the regime in which the Kelvin equation also needs corrections as a result of the 
growth of nematic layers close to the wall. 

6.2. Comparison with experiment 
Yokoyama et al. [7] carried out experiments on liquid crystal 4-n-pentyl-4‘-cyano- 

biphenyl (5CB) between SiO and PVA substrates. Essentially the experiment measures 
ij( T). A quantitative comparison between experiment and theory is rather difficult at  
this stage mainly because the experimental data do not provide a precise determination 
of the critical thickness and temperature. Nevertheless we have been able to estimate 
values for the surface parameters h, and g using the approximate formulae (72) and 
(74). If for the SiO surfaces we estimate D,, x 1 I00 A and T,, - T N I  = - 0.1 K, then 
we find h, = 0.129 and g = 1.38. In physical units this leads to h, - 0.53 x J m ’ 
and g = 0.57 x J m-2. For the PVA surfaces if we estimate D,, E 1600A and 
T,, - TNI = 0.03 K, this leads to h, = 0.187 and g = 1.6, corresponding to physical 
values of h,  N 0.77 x J m-2 and g N 0.66 x lop2 J mp2. In both cases we have 
used for A,  B, C and L values given by Sheng [21], and the matching between model 
and physical parameters is as described in equation (I  8) and (1 9). We notice, however, 
that the energy scale seems rather large compared to the nematic-isotropic surface 
tension in 5CB of -2  x 10p5Jm-2; further work would appear to be fruitful. 

7. Structural forces in nematic films 
We now turn to the structural force between the two walls, which as shown in $4, 

is given by 

nD = - L F ( q m )  - F(?b)l. (75) 

The condition (44) shows that n, is an increasing function of D, and is zero at 
D = m. Hence in this model n, is always negative, or equivalently the plates attract 
each other. 

We can also analyse the asymptotic behaviour in the large D limit. Because 
F’(qb) = 0, 

F(qm) - F(qb) (?m - qb)’, (76) 

n, - exp{[-3F”(?b)l”2D/r}. (77) 

and from equation (46), we expect 

This exponential behaviour is a characteristic of the contact short-range potential 
assumed for the surface forces. Power law surface forces would give rise to a power 
law dependence of n, upon D [22]. 

The nematic-paranematic transition can be thought of as taking place at constant 
tN, by allowing D to vary. The disjoining pressure goes through a discontinuity at  the 
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The N-I transition in a restricted geometry 299 

Figure 6. Disjoining force in the caseg = 0.1 5 ,  h = 0.01 at t = O.2Just below t,, = 0.0247. 

transition. If At = t N P ( D )  - t N 1  > 0 the high D phase is paranematic, but if At < 0 
the high D phase is nematic. In both cases, however, 

n D ( D - )  < n D ( D + )  (78) 
and n,(D)  remains an increasing function of D.  The attractive disjoining forces 
violate the mechanical stability condition (44); they could not be observed in a simple 
experimental context [ 151. 

The discontinuity AnD = n , ( D + )  - n , ( D - )  along the coexistence line in ( D - ' ,  t )  
space presents an interesting feature. In the asymptotic regime 

- A F ( q ~ ,  f N P ( D ) ) ,  (79) 

(80) 
Thus initially An, increases as D - '  increases. However, as D is further reduced the 
discontinuity goes through a maximum and decreases, finally disappearing at the 
critical point. 

In figure 6 we present a typical plot of 71, against D ,  at constant t .  We have chosen 
h, = 0.01 and g = 0.1 5, the phase diagram of which is given in figure 1 (c);  for these 
parameters t,, = 0.0247 and Dcr/( x 6 .  The plot is at t = 0.02 < tc r .  The significant 
features are the high D exponential behaviour, the rapid rise in n, close to D,,, and 
the lower dn,/dD for smaller D.  The large dn,/dD in the region of D,, is a critical effect 
indicating the closeness of the critical point; at the critical point this quantity diverges. 

We would like to make contact with the experiment carried out by Horn et al. [15]. 
They measured the force between mica surfaces separated by the nematic liquid 
crystal 5CB in both planar and homeotropic orientations at room temperature. They 
found repulsive medium range structural forces and speculated that the modification 
of the order parameter near the surfaces was responsible for these forces. The repulsive 
structural forces cannot therefore be explained by the present model, confirming a 
prediction by MarEelja and RadiC [23] who made an incomplete calculation using a 
simpler version of our model. In fact the experiment of Horn et al. was slightly more 
complicated than two parallel plates; in their experiment a drop of liquid crystal was 
placed between two cylindrical surfaces whose symmetry axes were parallel. However, 
this cannot change the qualitative picture. The attractive nature of the structural 

and hence from equation (50) 

AnD - (SI - SN)AtNp - D - ' .  
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300 A. Poniewierski and T. J. Sluckin 

forces should be independent of the detailed form of V,(q), so long as it is assumed 
to be a contact potential. If V,(r]) had non-zero range this might make a difference. 
Repulsive structural forces have been predicted a t  short range [24], but these are due 
to intermolecular correlations, and the range is much shorter than the experimental 
range. Evans et al. [ 121 studied the statistical mechanics of thin liquid films using a 
non-local density functional approach. In this system it is the density rather than the 
oricntational order which changes, but otherwise there are strong analogies with the 
system we study. 

However, if the primary ordering force at the surfaces is dipolar, and only 
indirectly nematic through the coupling between polar and nematic order parameters, 
then repulsion between the walls is possible, as we now show. We write the free energy 
per unit volume as a function of a polar order parameter p .  and ignore its dependence 
on the nematic order parameter q: 

where Fis in general an even function ofp, a > 0 implies that there is no spontaneous 
dipolar order, and for simplicity we take F ( p )  to have the simple form as in equation 
(81). We have introduced a dipolar correlation length c. The polar order parameter p 
is in general a vector, but if the walls force p to be in the z direction, we take p = p L  
to be a scalar. We shall not specify a particular form of the surface field V , ( p ) ,  other 
than to observe that if the walls are identical, 

Ps = P(0)  = - P ( n  (82) 
and p(;) is anrisymmetric about z = 012,  by contrast with r](z) which is symmetric, 
and consequently p ( D / 2 )  = 0. The Euler-Lagrange equations for p and the crucial 
thermodynamic quantities can be written down by analogy with equations (27),  (28), 
(40). (41). the equivalent equations for r ] ;  we find 

c2 (zy = F ( p )  - F(0) + KA = F ( p )  - F,, 

where 

and the disjoining force is given by 

nd = -(Fm - Fb), 
where the bulk free energy density Fb is 

Fb = F(0). (87) 

7 [ ~  = KA > 0, (88) 

Combining equations (83), (86) and (87) we obtain immediately 

or equivalently a repulsive long-range force between the plates. The large D behaviour 
of the disjoining force can be obtained from the analogue of equation (31), 
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from which, combining equations (88) and (89), 

nD - exp [ -+()a)’’*D/a. 

30 1 

In fact we expect both dipolar and nematic effects at the interfaces, which give rise 
to competing attractive and repulsive forces. A further complication might be the 
long-range nature of the electrostatic forces which interact with the dipoles. The 
crucial feature which ensures the repulsive force, however, is the anti-symmetry of the 
profile p ( z )  around the centre of the slab. The experimentally observed repulsive 
disjoining force is thus indirect evidence of the importance of surface dipolar forces, 
giving rise to surface dipole order. The dipolar forces do not need to be strictly 
electrical dipole forces; there is no evidence to suggest that mica is electrically active. 
However the molecules of 5CB do not have complete inversion symmetry along their 
major axis, and this may give rise to surface forces leading to dipolar surface order. 
We emphasize however that surface nematic order alone leads to an attractive 
disjoining force. 

8. Conclusions 
The primary aim of this study has been the investigation of the statistical mechanics 

of a directionally uniform nematic, in a thin slab between identical walls, in particular 
close to the nematic-isotropic transition. We have used a Landauae  Gennes mean 
field type theory with surface interactions of zero range. The theory is a one order 
parameter theory, and as such is applicable close to any orderdisorder transition in 
a thin slab geometry. A secondary aim of this study has been to make a general 
contribution to the theory of the effects of finite size on first order phase transitions. 
We have also endeavoured, as some previous workers have not, to maintain contact 
between the results of the statistical mechanical calculations and more general therrno- 
dynamic considerations. 

The theory predicts, almost universally, that in a finite slab the first order nematic- 
isotropic transition is shifted, and for sufficiently thin systems this first order line 
terminates at a critical point. For large thicknesses the shift in transition temperature 
is inversely proportional to thickness, as predicted by the thermodynamic Kelvin 
approximation. For thinner systems the coexistence line is described by a Clausius- 
Clapeyron relation. In fact in many cases the asymptotic, large thickness result 
remains true even at lower thicknesses. The only exception, within the theory, to the 
generic phase diagram occurs when the walls are completely disordering; then there 
is no critical point. So long as this is not the case the high temperature isotropic phase 
is properly called a paranematic phase, because of the wall-induced order. This order 
can become quite significant close to the transition, in particular when the walls are 
wet by the nematic phase, and as the critical point is approached. 

For many cases of partial wetting (cos 0 # 0 or n)  the walls are such as to slightly 
favour order when the bulk phase is disordered, but to disfavour order when the bulk 
is nematic. In the thick slab there will then be two possible shape profiles, one with 
increased and the other with decreased wall order. Although the nematic and para- 
nematic profiles become identical at the critical point, in general the shape of the 
profile changes before the critical point, and depends on whether V,’(ij) is greater than 
or less than zero. 

The statistical mechanics of the finite thickness system has a strong analogy with 
that of a nematic in an ordering field. Indeed, our results show that in the weak surface 
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field regime the phase diagram of the finite system would be well predicted by 
averaging the surface fields over the whole system. The finite magnetic field critical 
point has not hitherto been experimentally accessible; the finite thickness effects are 
perhaps more so. 

We have also studied the structural force between two walls. We find that sur- 
face nematic ordering gives rise to attractive forces between walls, but that the 
experimentally observed repulsion can only be understood in terms of surface dipole 
ordering. 

The calculations of the asymptotic behaviour of various parameters in the large 
D limit should be directly amenable to experiment. We draw particular attention to 
behaviour of the discontinuity in the surface order parameter (Avo in 45) when the wall 
is such that one phase (either N or I) completely wets it. We find that in the large D 
limit, this discontinuity is normally inversely proportional to thickness (recalling that 
in a semi-infinite system it would be continuous). However the discontinuity is 
proportional to D-'12 if the parameters at  the wall are appropriate to a critical wetting 
transition. This includes the particular case of a wall wet by the isotropic phase. Such 
wetting is in a sense less powerful, and unsurprisingly Aq,, is greater, i.e. D-'I2 > D-'  . 
Finally, of course, if the wall is not completely wet by either phase Avo remains finite 
at D-' = 0, which is larger still. 

We next ask in what way the modelling of the problem might be incomplete. The 
contact interactions at the wall are an approximation which will give rise to incorrect 
asymptotic behaviour of the disjoining pressure at large thicknesses. If the surface 
interactions are power-law like this could be serious; however liquid crystal orienting 
interactions may be short-range. In any event the experiments remain unexplained 
and further experiments are clearly desirable. Similar qualifications apply to the whole 
Landau-de Gennes formalism, but it has proved useful in other contexts. 

Perhaps a larger problem is concerned with the effect of fluctuations. For the 
nematic-isotropic transition fluctuations are important even for bulk three-dimensional 
systems, in the sense that the Ginzburg criterion [25] is not satisfied close to the 
transition. Presumably this becomes even more important for a thin system which is 
becoming in some sense two dimensional. This may mean that the theory is unreliable 
from a quantitative point of view, especially for thinner slabs. However, presumably 
the qualitative picture remains viable. We note, however, that in a system of cylindrical 
or spherical pores, the fluctuations become sufficiently powerful to broaden the singu- 
larities associated with a first order phase transition. A mean field theory of the type 
used in this paper would be unable to treat this phenomenon. In the nematic case for 
such a geometry it would also no longer be possible to ignore director inhomogeneities. 

Finally, we turn to directions for future research. First of all there is a need for 
further experiments. The experiments on the nematic-isotropic transition at finite 
thickness by Yokoyama et af. [7], while strongly suggestive, are by no means con- 
clusive, and unambiguous observations of the finite thickness critical point are clearly 
desirable. Similarly there is a need for further experimental work on the disjoining 
pressure, especially in view of the possible competition between attractive and repulsive 
structural forces. On the theoretical side we emphasise that the present theory is in fact 
the simplest possible. More sophisticated attempts at modelling should include 
explicitly the possibility of density change close to walls and the full nematic ordering 
tensor. Intriguing phenomena may also result when the two walls are no longer 
identical, including the possibility that the ordering temperature may no longer be a 
monotonic function of thickness. 
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Appendix 1 
Derivation of the stability conditions 

In this appendix we derive the stability conditions equations (38) and (39) used in 
the derivation of the equilibrium values of vo and q,,, in $4. We recall that these 
quantities are solutions of the equations d,, = 0, 4,,m = 0 where 4(qo, q,,,) is described 
by equations (28) and (29). The stability equations, conditions that a minimum in 4 
has been found, are 

4 o ) l o  ’ 0, (A 1) 

In fact the equation 4,m = 0 yields an implicit relation between qo, q,,, and D, and as 
a result equation (A 2) can be rephrased as 

where 4 is now thought of as being a function of the one variable q,,,. 
From equation (28) we derive 

40,o = %ova. 
Now from equation (29) 

avo = T~J[F (vO)  - F ( v m ) I  + K’(vO), 
= 0. 

Hence 

We now substitute from equation (A 5 )  into equation (A 6), yielding 
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and hence from equation (32) 

Hence from equations (A 1) and (A 10) we derive the condition (38) 

We shall derive equation (39) by starting with the condition (A 3). From equation (28) 

(A 1 1  a) 

= 0, (A 1 I b)  

where equation (A I 1  b) is the stationary condition, but can be thought of as the 
defining equation for a (locally defined) function D(qm).  Then 

d2 4 
4; 

~ 

However, using equation (A 1 I 

and combining equations (A 12) and (A 14) we obtain 

(A 17) 

Now, recalling equation (32) Fm(qo) = F(q,), and changing the independent variable 
from q, to qo,  we derive 

d2  4 
d q m  

Hence > 0 implies the relation (39) 

Appendix 2 
In this appendix we discuss in more detail the behaviour of the graph of D(qo), 

derived from equations (31) and (32) and used in order to derive the phase diagram 
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discussed in $6. This will enable us to see more clearly the origin of the critical point 
within the theory, and we shall also see the connection between the graph of D(qo)  and 
the shape of the profile q(z). 

We consider first the simplest case of g = 0; in this case the wall always orders the 
liquid crystal, so qo > q,,,. We also find cosd > 0 in the semi-infinite system, and 
from the Kelvin approximation tNp(D) increases as D decreases in the asymptotic 
large D regime, a trend which in fact continues for smaller D right up to the critical 
point. In figure 7 D(qo)  has been plotted for an increasing sequence of temperatures, 
starting at t N ,  and terminating at the nematic-paranematic critical temperature 
tcr = fNP(Dcr)* 

a 

'0 

d 

TO 

b 

'0 

e 

C 

- '0 

Figure 7. Graphs of D(qo)  as temperature is increased for g = 0. (a) f = fNI; (6) f, > tNI;  
(c) f2 > 1,; ( d )  t3 > t z ;  ( e )  t = tcr. 

The main features of these graphs can be understood as follows. For pedagogical 
reasons we start with figure 7 (b),  in which D(qo)  has three separate branches. The low 
qo solution corresponds to the thin film of low adsorption regime, i.e. low qo and low 
q,,, = qb in the D = 00 limit; the intermediate qo solution corresponds to the semi- 
infinite case in which the surface is more or less nematic, but the bulk is isotropic (the 
so-called thick or wetting film solution, q,,,, is still small); the high qo solution 
corresponds to the nematic liquid. In all cases the physical solutions correspond to 
D(qo)  being a decreasing function of D', this means that the smaller the system, the 
more the order, as expected for h, > 0. The regions where D(qo)  is an increasing 
function of qo (the dotted lines) are unstable solutions. For h, 5 0.12 the nematic 
phase does not wet the wall and in general, the low lo branch is more stable than 
the intermediate branch. However for h,  > 0.12 we do get wetting and the inter- 
mediate branch is more stable. As discussed in equation (54) at the finite D transition 
to the nematic branch Avo - D - '  - AtNp, indeed as t approaches t , , ,  the wetting 
film solution for D = co approaches the nematic solution; this corresponds to the 
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intermediate branch of D(qo) narrowing and squeezing towards the upper nematic 
branch of D(qo), as can be seen in figure 7 (a) where it has finally disappeared. On the 
other hand as t is increased the wetting film branch becomes progressively less stable 
and it disappears between figures 7 ( b )  and ( c )  for D = 00, as the unstable thin film 
D(qo) branch hits the stable thick film branch. Thenceforth (figure 7 (c ) )  the thick film 
only leaves a ghost at finite D, in the form of an intermediate maximum of D(qo).  
Eventually the bulk nematic phase becomes unstable at a temperature ti (= & in our 
model for h = 0),  and then only one branch of D(qo)  remains (cf. figure 7 ( d ) ) .  Notice 
however that a nematic phase still exists for low D ,  and the D = 00 solution has now 
become a maximum in D(qo). Finally in figure 7 (e) at t = t,,, D(qo) becomes monotonic 
with an inflexion point at  qo = q:. The phase transition between the low qo and high 
qo branches of D(qo) disappears here, so this is the critical point. 

The situation is slightly different for h ,  2 0.024, for then there is no boundary 
transition and only one possible value of qo for D = co, implying the absence of the 
left-hand branch in figures 7 ( a )  and (b) .  Figure 7 ( b )  is thus directly followed by 
figure 7 ( d ) .  Otherwise the picture is qualitatively the same. In all these cases the low 
temperature solution is the nematic branch. If t is increased at  fixed D the solution 
jumps to another branch at a phase transition temperature f N p ( D )  > t N I .  For 
D < D,,, on the other hand, this is no longer possible and there is no phase transition. 

We now examine what happens as we turn on progressively a surface disordering 
effect. The crucial quantity to monitor is q$, defined by 

v,’(qo*) = - h ,  + g , q :  = 0. (B 1) 

The two points to bear in mind, from equations (26) and (27), are that the sign of 
[’(qo) gives the sign of (dq/dz);=,, and that (dqldz) is monotonic for 0 < z < D/z.  
From this we conclude that if q,,, > q$, then q,,, > qo > q:, and conversely if q, < q$ 
then q,,, < qo < q;. There are now three cases, depending on the size of 9:. We list 
and discuss them in order of increasing surface disorder, or equivalently, decreasing 

In case (i) q t  > q N ( ? N l )  = 6 .  Then because q N ( t )  is a decreasing function of t ,  the 
surface potential is ordering both in the nematic phase and in the isotropic phase in 
the region of t N 1 .  The structure of D(qo) is now very similar to that in figure 7 ,  and 
f N p ( D )  > tN1 as in that case also. There is one slight difference. Because qo > q,, but 
also qo < in order to maintain the monotonicity of q(z), as D -, 0, qo -, q;. 
Because of the similarity of this case to the simple ordering case we do not show a 
separate diagram for this. 

In case (ii) q$ < q N ( t N I ) ,  but cose > 0. In this model cose = 0 corresponds to 
h,  = gq, = g/9 [l]. A metastable bulk nematic continues above t N ,  with q N ( f )  
decreasing with t ,  until it reaches bulk instability at tft (= & for h = 0 in this model), 

The crucial region of interest is above t N 1 ,  because > t N I .  We consider case 
(ii (a)): q N ( t N I )  > q$ > q i ,  and case (ii (b)):  qft > q$ > qc separately. In both cases, 
however, we observe that at t N 1 ,  V,’(O) < 0 in the isotropic phase and so as far as the 
isotropic phase is concerned the surface orders, but K ’ ( V N ( t N 1 ) )  > 0, and hence from 
the point of view of the nematic phase the surface is disordering. 

In figure 8 we show a number of plots of D(v0)  for increasing values of t in case 
(ii (a)). In figure 8 (a), close to t N 1 ,  there are two branches of D(qo),  The left-hand 
branch is the isotropic branch. The physical part of this branch has D decreasing with 
qo, corresponding to increased order at the surfaces. The right-hand branch is the 

Vo*. 

* - 1  by which point qN has reached q;; in this model F(q) has an inflexion point at q N - 6 ’  
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I 

!I 
I! 

C d 

Figure 8. Graphs of D(uo)  for coso > 0, g # 0; case (ii(a)) in the text. (a) t = f N I ;  

(b)  f = r:  > f , , ;  ( c )  f :  < t < t;:; ( d )  f;: < f < f cr .  

nematic branch, but on this branch as Vo decreases, so does D, corresponding to 
disordering surfaces. On this branch as qo + q: ~, D + 0. There is also an unstable 
I]o = I]: (for all D) branch, as can be seen from equations (26) and (27).  The unstable 
part of the isotropic branch also hits q o  = I]:, and terminates there, at a finite value 
of D, because the change of sign of (dqldz) at I],, = I]? destroys the solution. However 
as t increases I],.,([) decreases, eventually reaching I]: in figure 8 (b). The surface is now 
neutral with respect to the nematic phase, and ordering with respect to the isotropic 
phase. The right-hand branch of D(q0) is thus squashed into the line I],, = I]:. As t is 
further increased the nematic branch has D increasing with decreasing I],,, consistent 
with q N ( t )  < q: and ordering interfaces (cf. figure 8(c)). Note that D(q,*) remains 
zero. The progression from figure 7 (c) to 8 ( d )  is analogous to that from figure 7 (b)  
to ( d )  in the case of continuous wetting: the bulk nematic is destabilized. Finally (not 
shown) a critical point is reached, by analogy with figure 7 ( e ) .  

Schematic order parameter profiles for the coexisting phases within the slab for 
case (ii (a) )  are shown in figure 9. In figure 9 (a) the paranematic phase is more ordered 
near the walls, but the nematic phase is less ordered near the walls, corresponding to 
the respective branches of D(I],) in figure 8 (a) .  In figure 9 (b) the paranematic phase 
remains more ordered near the wall, but the nematic profile is constant, corresponding 
to D(I]?) in figure 8 (h).  However in figure 9 (c) both profiles are more ordered close 
to the wall, corresponding to subsequent pictures in figure 8, and remaining true at 
the critical point. 

In figure 10 we present plots of D(I]")  for case (ii (b)),  for temperatures increasing 
from t,, to t,,(D). Figure 10(a) represents the situation at  (and just above) t , ,  and is 
analogous to figure 8 (a).  We remark that in this figure the turning point of D(q,,) takes 
place for qmax < I],, < I]:, where qmax is the point at which F(q) has a maximum. This 
can be seen from equation (32),  which shows that F(q,) and I], have turning points 
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a b C 

Figure 9. Coexisting profiles for the case described in figure 8. N is the nematic profile; P is 
the paranematic profile. (a) f < f:; (b)  t = 1:; (c) t > t : .  At f = f,, > f: the two 
profiles become identical. 

a b 

'I I I I I 
I I 

: '.. : i "\ I I  ; 
I I I  

% 

I I  
I 1  
I 1  
I I 

i 
I 1  

* ' b  
% 

Figure 10. Graphs of D(qo) ,  g # 0, case (ii(b)) in the text. (a)  t = fNI; (b)  t = t* > fNI; 
(c) t = 11 > t*;  ( d )  t = t,, > t l .  

close to but slightly above the maximum of F(qo), and from equation (31) which gives 
D in terms of an integral between q,,, and qo. Thus we expect a qualitative change 
when qmaxr which is an increasing function of t ,  reaches qt, at a temperature t* (cf. 
figure lO(b)).  At qO+ the governing equations are satisfied for arbitrary D, and 

vo-Vo'-  V O - V o ' +  
Lt D(q, = Lt D(q0). 

As r is increased further, qO+ is now less than qmax, and so there is a region of instability 
on the right-hand branch of D(qo)  (cf. figure 10 (c)), and a region of what might still 
be called nematic stability (for small D) on the left-hand branch of D(qo).  Finally (cf. 
figure 10(d)) the kink in the branch of D(qo) disappears at a critical point. 

The profiles q(z )  corresponding to figure 10 are the same as those in figure 8 
corresponding to case (ii (a)).  Thus the profiles corresponding to figure 10 (a) are 
shown in figure 9 (a);  the exceptional case corresponding to figure 10 (6) is shown in 
figure 9 (h),  and figure 9 (c) represents the profiles of figure 10 (c). 

We now consider case (iii) for which cos0 < 0, and 0 < q t  < qc .  The surface 
disorder has now increased sufficiently to depress the ordering transition in a finite 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



The N-I transition in a restricted geometry 309 

a b 

C 

Figure 1 1 .  Graphs of D(qo) ,  COSO < 0. (a) I = tNI; (b)  t = t* < tNI;  (c) I = I ,  < I * ;  
( d )  I = I, ,  < I , .  

a b C 

Figure 12. Coexisting profiles for case described in figure 11 .  (a)  fNI  > t > I * ;  (b )  t = I * ;  
(c) I* > I > lcr. 

system. The relevant region to examine is now t < t N , .  Graphs of D(q0) are shown, 
now in order of decreasing temperature, in figure 1 1. The features of this set of graphs 
are analogous to those of figure 10. Close to t N 1  (cf. figure I 1  (a)) I]: < qrnax; there is 
a left-hand paranematic branch of D(I],) extending to D = 0 at I]:, and a right-hand 
nematic branch of D(q0)  which becomes unstable close to I]: and terminates at a finite 
value of D at I]:. As t is decreased I],,, decreases and reaches qt (cf. figure 11 (b)), there 
is then an exchange of stability between the two branches and part of the paranematic 
branch lies to the right of q: (cf. figure I 1  (c)). Finally the kink in D(I],) disappears 
at a critical point (cf. figure 1 I ( d ) ) .  

The coexisting profiles corresponding to these graphs are shown in figure 12. In 
figure 12(a), near f N I ,  as in the previous cases there is a nematic phase slightly 
disordered near the wall and a paranematic phase ordered close to the wall, corres- 
ponding to figure I 1  (a ) .  Figure 12(b) corresponds to the situation in figure 11 (b); for 
sufficiently small D the paranematic profiles have I ] (z )  = I]:. Then the coexisting 
profiles in figure 12 (c) are both less ordered near the wall; this is consistent with both 
profiles corresponding to q0 on the right hand branch of D(qo).  

Finally we come to the case h ,  = 0, when the surface is purely disordering. 
Depending on the value of g the isotropic phase wets one wall partially 
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a b 

Figure 13. Graphs of D(qo) for a disordering surface h, = 0. (a)  0 < t < t N I ;  (b )  t < 0. 

( -  1 < cose < 0) or completely (cos8 = - 1). Complete wetting occurs if g > +. 
Plots of D(qo) for 0 < t < tN, and t < 0 are shown in figure 13 (a) and (b), respectively. 
For 0 < t < fN, there are two solutions: qo = q,,, = 0 and a second solution which 
is the stable branch of D(qo) .  For complete wetting the right-hand asymptote 
approaches qo = 0 as r --* t i , .  From figure 13 (a) it is clear that there is no critical 
point for t > 0. For t < 0, D(qo) is finite and D’(qo) is negative. There is thus no 
critical point here either, except in the purely formal limit of t,, = - co, at which 
D(qo = 0) = O’(qo = 0) = 0. We remark that below t = 0 the bulk isotropic phase 
is unstable. However for a finite system with low enough D, the q(z) = 0 phase can be 
stabilized, even though it corresponds to a local maximum of F(q), because then CJ = 0. 

References 
[I] PONIEWIERSKI, A., and SLUCKIN, T. J., 1984, Molec. Crystals liq. Crystals, 111, 143; 1985, 

[2] SLUCKIN, T. J., and PONIEWIERSKI, A., 1986, Fluid Interfacial Phenomena, edited by 

[3] SHENG, P., 1976, Phys. Rev. Left . ,  37, 1059; 1982, Phys. Rev. A, 26 1610. 
[4] TELO DA GAMA, M. M.,  1984, Molec. Phys., 52, 585; 1984, Molec. Phys., 52, 61 1. 
[5] See, for examplc, SULLIVAN, D. E., and TELO DA GAMA, M. M., 1986, Fluid Inferfacial 

Phenomena, edited by C. A. Croxton (John Wiley), p. 45. 
[6] KUZMA, M., and LABES, M. M., 1983, Molec. Crystals liq. Crystals, 100, 103. 
[7] YOKOYAMA, H., KOBAYASHI, S., and KAMEI. H., 1985 (preprint). 
[8] THOMSON, W. T. (Lord Kelvin), 1871, Phil. Mag., 42, 448. 
[9] NAKANISHI, H., and FISHER, M. E., 1981, J. chem. Phys., 75, 5857. 

Molec. Crystals liq. Crystals, 126, 373. 

C. A. Croxton (John Wiley), p. 215. 

[lo] LIPOWSKY, R., and GOMPPER, G., 1984, Phys. Rev. B, 29, 5213. 
[ I l l  SORNETTE, D., 1985, Phys. Rev. B, 31, 4672. 
[I21 EVANS, R., MARINI BETTOLO MARCONI, U., and TARAZONA, P., 1986, J. chem. Phys., 84, 

[I31 See, for example, DERJAGUIN, B. V., 1954, Discuss. Faraday Soc., 18, 26. 
[I41 PEREZ, E., PROUST, J. E., and TER-MINASSIAN-SARAGA, L., 1977, Colloid polym. Sci., 

255, 1133; 1978, Colloidpolym. Sci., 256, 784 (these articles are peculiar in that the first 
of these is No. 2 in the series, while the second is No. I).  

2376. 

[I51 HORN, R. G.. ISRAELACHVILI, J. N., and PEREZ, E., 1981, J. Phys.. Paris, 42, 39. 
[I61 KURIK, M. V., 1977, Fizika tverd. Tela, 19, 1849; 1977, Soviet Phys. solidst . ,  19, 1081; this 

[I71 FAN, C. P., and STEPHEN, M. J., 1970, Phys. Rev. Lett., 25, 500. 
[ 181 See also: PALFFY-MUHORAY, P., and DUNMUR, D. A,, 1983, Molec. Crystals liq. Crystals, 

97, 337. WOJTOWICZ, P. J., and SHENG, P., 1974, Phys. Lett. A, 48, 235. 
[I91 The notation we adopt is consistent with that in the statistical mechanics literature; see, 

for example, FISHER, M. E., and NAKANISHI, H., 1982, Phys. Rev. Lett., 49, 1565; the 
temperature variable is t and the surface fields are h, and g. For translation: Sheng’s g 
(31 is essentially our h, , Lipowsky and Gompper’s [ 101 a ,  is our g ,  and Fan and Stephen’s 
j [I71 is our 1. 

equation was used to  understand crystallization in a slab geometry. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



The N-I transition in a restricted geometry 31 1 

[20] These results are in slight disagreement with those of Sheng [3]. For g = 0 we find t,, 
weakly decreasing with h , ,  although independent in the simple approximation. By 
contrast Sheng [3] finds t,, increasing with h ,  . The effects are, however, small. 

[21] I f  we translate the notation of Sheng [3], we obtain for the parameters in equation (18): 
A '  = 8.67 x 1O4Jrn-'K-'. B = 2.12 x 106Jm-3.  C = 1.74 x 106Jm-', T* = 
307.141(, L = 4.5 x IO- '*Jm- ' ,  { = 13.2A. 

[22] DE GENNES, P. G.,  1981, J .  fhys  Lett., faris, 42, 377. 
[23] M A R ~ E L J A ,  S., and RADIC, N., 1976, Chem. Phys. Lett., 42, 129. 
[24] See, for example, GRIMSON, M. J., RICKAYZEN, G., and RICHMOND, P., 1980, Molec. 

[25] GINZBURG, V. L., 1960, Soviet Phys. solid St. ,  2, 1824. 
Phys., 39, 61. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


